ICC Educational Program
September 10, Dallas, Texas

HV XLPE Cable Design and Manufacturing
Axel Schlumberger
Overview

1. Design | Industry Standards
2. Design | Conductors
3. Design | Insulation
4. Design | Bedding Tapes
5. Design | Sheath/Screen & Jacket
6. Manufacture | Extrusion Methods
7. Manufacture | Compounds
8. Manufacture | Sheath/Screen
9. Manufacture | Quality Assurance
DESIGN
Industry Standards

1. AEIC Association of Edison Illuminating Companies
2. CIGRE Internat. Conf. for Large Scale Electric Systems
3. ICEA Insulated Cable Engineers Association
4. IEC International Electrotechnical Commission
5. IEEE Institute of Electric and Electronics Engineers
6. UPSC TAC: Utility Power Cable Standards Technical Advisory Committee
 ICEA Group seeking input from ICC (IEEE), AEIC and NEMA with ANSI Standard as final product.
Industry Standards - AEIC

- Cable Engineering Committee founded in 1938
- Members are Utilities
- Participates in the UPS TAC Process
- First Solid Dielectric HV Standard issued 1987
- Present standard: AEIC Cable Standard (CS) 7 – 1993

What is covered?

Cable only

AEIC CS7-93
Industry Standards - AEIC

Pros
- Covers constructive detail
- Void, contaminant and eccentricity specs
- Comprehensive Routine Test protocol

Cons
- Cable only
- Obsolete insulation thicknesses
- Max Stress design inadequate
- Limited to 138kV
- Does not cover available designs
Industry Standards - CIGRE / IEC

- CIGRE Study Committee 21 established in 1927
- Members from utilities, manufacturers and universities / institutes from 31 countries
- Interfaces with IEC TC 20, which actually publishes international standards
- HV solid dielectric cable specific: IEC 60840, IEC 62067
- Other relevant standards: IEC 229, 815, 949, 859, etc etc.
Industry Standards - IEC 60840-1999

Pros
- Covers voltages up to 150/161/170kV and has a big brother
- Includes accessories (Splices and terminations)
- Covers after installation tests and, by reference, jacket tests for specially bonded systems
- Sets performance criteria rather than design detail

Cons
- Routine tests are marginal – eccentricity loose
- No check for voids and contaminants other than AC withstand and PD test
- Confusing cross references to other standards
Industry Standards - IEC 62067-1999

- Also see notes for IEC 60840

Pros
- Only standard for 230kV and higher – up to 500kV (Other than national standards such as EdF)
- Includes a system prequalification test
- Eliminates after laying DC test
- Eccentricity 10% max

Cons
- Includes a system prequalification test (see above)
Industry Standards - IEC

- IEC 229 – Tests on jackets
- IEC 815 – pollution / creepage for outdoor insulators
- IEC 859 – GIS (and transformer) interface
- IEC 949 – Short circuit
- IEC 287 – Current ratings
Industry Standards - ICEA / UPCS TAC

- I(P)CEA established in 20’s. UPCSTAC 1994
- ICEA: Historically composed of manufacturers
- Document developed through UPCSTAC
- Will replace AEIC CS7
- Status: Submitted to ICC for comments
- Will be approved by NEMA, IEEE, AEIC and adopted as an ANSI standard
Industry Standards - ICEA S108-720-xxxx

Pros
- Finally a North American Standard to up to 230kV
- Input from all groups concerned
- Best of both worlds approach

Cons
- Cable only!!
Conductors

- Copper or Aluminum
- ASTM B8/231 or IEC 228?
- Compact – for small sizes
- Reverse Concentric Compressed Class B – most common
- Segmental – Milliken for large sizes
- Hollow conductors / Keystone conductors
- Special constructions – enamelled or oxide coated wires
- Waterblocking or not?
Insulation

Longitudinal Stress at the Cable & Stress Cone interface

Maximum Stress: $Maximum Stress = \frac{U}{r \cdot \ln\left(\frac{R}{r}\right)}$

Important criteria:
- Maximum Stress
- Surface Stress
- Capacitance
- Dielectric Losses
AEIC CS7 Full Wall Design

<table>
<thead>
<tr>
<th>Rated Volt. KV</th>
<th>Cond. Size kcmil</th>
<th>Ins. Thickn. mils</th>
<th>Stress @ operating Voltage (kV/mm)</th>
<th>Stress @ impulse Voltage (kV/mm)</th>
<th>Capacitance mF/1000ft</th>
<th>Dielectric Loss W/1000ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>750</td>
<td>650</td>
<td>3.7</td>
<td>1.7</td>
<td>32.4</td>
<td>14.6</td>
</tr>
<tr>
<td>115</td>
<td>1250</td>
<td>800</td>
<td>4.9</td>
<td>2.3</td>
<td>40.6</td>
<td>19.1</td>
</tr>
<tr>
<td>138</td>
<td>1750</td>
<td>850</td>
<td>5.4</td>
<td>2.6</td>
<td>43.9</td>
<td>21.1</td>
</tr>
</tbody>
</table>

AEIC Maximum Stress Based Design

<table>
<thead>
<tr>
<th>Rated Volt. KV</th>
<th>Cond. Size kcmil</th>
<th>Ins. Thickn. mils</th>
<th>Stress @ operating Voltage (kV/mm)</th>
<th>Stress @ impulse Voltage (kV/mm)</th>
<th>Capacitance mF/1000ft</th>
<th>Dielectric Loss W/1000ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>750</td>
<td>340</td>
<td>6</td>
<td>3.7</td>
<td>52.5</td>
<td>32.4</td>
</tr>
<tr>
<td>115</td>
<td>1250</td>
<td>420</td>
<td>8</td>
<td>4.9</td>
<td>66.3</td>
<td>40.6</td>
</tr>
<tr>
<td>138</td>
<td>1750</td>
<td>510</td>
<td>8</td>
<td>4.8</td>
<td>65.0</td>
<td>39.0</td>
</tr>
</tbody>
</table>

Limits based on experience: <85 <35

Forte Recommendation

<table>
<thead>
<tr>
<th>Rated Volt. KV</th>
<th>Cond. Size kcmil</th>
<th>Ins. Thickn. mils</th>
<th>Stress @ operating Voltage (kV/mm)</th>
<th>Stress @ impulse Voltage (kV/mm)</th>
<th>Capacitance mF/1000ft</th>
<th>Dielectric Loss W/1000ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>750</td>
<td>450</td>
<td>4.8</td>
<td>2.6</td>
<td>42.0</td>
<td>22.8</td>
</tr>
<tr>
<td>115</td>
<td>1250</td>
<td>650</td>
<td>5.7</td>
<td>2.9</td>
<td>47.2</td>
<td>24.0</td>
</tr>
<tr>
<td>138</td>
<td>1750</td>
<td>725</td>
<td>6.1</td>
<td>3.2</td>
<td>49.7</td>
<td>25.9</td>
</tr>
</tbody>
</table>

Dielectric Loss W/1000ft
Bedding Tapes

- Bedding and protection
- Centering of cable core
- Waterblocking through swelling agent (polyacrylate powder)
- Maintain electrical contact

20 mils 80 mils
Metallic Sheaths

- Carry capacitive and short circuit currents
- Radial moisture barrier
- Longitudinal moisture barrier in combination with swellable tapes
- Mechanical protection of the cable core
- Withstand stresses during pulling
- Thermo-mechanical aspects
- Miscellaneous
Metallic Sheaths

- Aluminum, extruded and corrugated
- Aluminum, welded and corrugated
- Copper, welded and corrugated
- Laminates, copper or aluminum
- Lead, extruded
- New: Welded Aluminum Laminate (France)
Metallic Sheaths
Metallic Sheaths

- Outer diameter ⇒ Laminate?
- Cable weight ⇒ Aluminum?
- Ground fault requirements ⇒ Copper?
- Mechanical stress ⇒ Corrugated Sheath?
- Lead: hazardous waste ⇒ An issue for me?
Cable Jackets

- Standard: LLDPE or MDPE
- PVC – fire retardant but has halogens
- Halogen Free Fire Retardant (HFFR)
- Semi-conductive outer layer for jacket integrity test – extruded or graphite paint
- Specially bonded system – jacket test
MANUFACTURING
Extrusion Processes

- Vertical Extrusion Line (VCV)
 High building or deep hole

- Horizontal Extrusion Line (MDCV)
 Long land die, lubricant, speed, large conductors

- Catenary Extrusion Line (CCV)
 Catenary shape, small conductors
Extrusion Keywords

- Compound feed
- True Triple Extrusion
- X-ray dimensional scanning
- Dry curing
- Dry cooling
- Stress relaxation
- Post extrusion scanning
Compounds

Conductor Shield

<table>
<thead>
<tr>
<th>Compound</th>
<th>Designation</th>
<th>Surface protrusions larger 20 microns</th>
<th>Surface protrusions larger 30 microns</th>
<th>Surface protrusions larger 40 microns</th>
<th>Surface protrusions larger 50 microns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>Depends on manufacturer</td>
<td>6000</td>
<td>100</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Super Smooth</td>
<td>Depends on manufacturer</td>
<td>10</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Use Super Smooth Conductor Shields only for High Voltage Cable

Insulation

<table>
<thead>
<tr>
<th>Compound</th>
<th>Designation</th>
<th>Grade</th>
<th>Contaminant Size</th>
<th>Max Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Voltage</td>
<td>Depends on manufacturer</td>
<td>Extra Clean</td>
<td>5-9 mils</td>
<td>3</td>
</tr>
<tr>
<td>High Voltage</td>
<td>Depends on manufacturer</td>
<td>Super Clean</td>
<td>>4 mils</td>
<td>0</td>
</tr>
</tbody>
</table>

Use Super Clean Compound only for High Voltage Cable

Use firmly bonded insulation shields only
Compound Handling

Class 1,000 bag handling room
Sheath / Screen

- Extruded - heat
- Welded – integrity of the weld
- Laminate – integrity of overlap seam
- Consistency – thermo-mechanical requirements
- Neutrals – bedding and indent
Quality Assurance

- ISO 9001 QA system required
- Quality Culture and education
- Testing to AEIC, IEC marginal
- Additional tests, such as hot oil visual
- Consistent procedures for non-conforming material
Thank you