Thermal and Mechanical Properties
of EPR Cable Compound

Steven Boggs
ICC Educational Session
7 November 2005
Phoenix, Arizona
Source of Data

• All data were measured during 2005 at the Institute of Materials Science, University of Connecticut

• DMA, TGA, DSC, and TMA data were measured by the staff member in charge of the Thermal Lab within IMS.

• Thermal conductivities/resistivities were measured in my lab under my supervision.
Source of Materials Measured

• Four EPR compounds were obtained from three companies which compound EPR
• Samples (plaques and cylinders) measured were made by the companies which supplied the compounds
• XLPE samples were obtained from a company which had it in stock and which made the samples used for measurement.
Thermal Data

- Underground transmission of electric power is limited by the ability to dissipate heat from the conductor through the insulation and into the soil.

- The range of Thermal Conductivity:
 - Cu: $390 \text{ W/m-K} \ (0.26 \ ^\circ\text{C-cm/W})$
 - Al: $240 \text{ W/m-K} \ (0.42 \ ^\circ\text{C-cm/W})$
 - BeO dense ceramic: $30 \text{ W/m-K} \ (3.3 \ ^\circ\text{C-cm/W})$
 - ZnO arrester element: $15 \text{ W/m-K} \ (6.7 \ ^\circ\text{C-cm/W})$
 - Good Soils: 2 to 1 W/m-K (50 to 100 °C-cm/W)
 - Polymers: 0.1 to 0.3 W/m-K (300 to 1000 °C-cm/W)
 - Aerogel: 0.02 W/m-K (5000 °C-cm/W)
Measurement of Thermal Conductivity

• If a constant power line heat source is placed in an infinite solid, the temperature of the line heat sources vs time is given by

\[T(t) = -\frac{q}{4\pi k} \text{Ei}\left(\frac{-r^2}{4\alpha t}\right) \]

Where \(q \) is the power per unit length, \(k \) is the thermal conductivity, \(\alpha \) the thermal diffusivity, \(r \) is the distance from the line heat source, and \(\text{Ei} \) is the “error function”.
• This can be expanded in the form:

\[
T(t) = \frac{q}{4\pi k} \left(\ln \left(\frac{4\alpha t}{r^2 D} \right) + \frac{r^2}{4\alpha t} - \frac{1}{4} \left(\frac{r^2}{4\alpha t} \right)^2 + \frac{1}{9} \left(\frac{r^2}{4\alpha t} \right)^3 - \frac{1}{16} \left(\frac{r^2}{4\alpha t} \right)^4 + \ldots \right)
\]

• Only the first term is significant at long times, thus:

\[
T(t) = \frac{q}{4\pi k} \left(\ln \left(\frac{4\alpha t}{r^2 D} \right) \right) \quad \text{or} \quad T(t) = \frac{q}{4\pi k} \left(\ln(t) - \ln \left(\frac{r^2 D}{4\alpha} \right) \right)
\]

• Thus if we plot Temperature vs log of time, we can determine the thermal conductivity, \(k\), knowing \(q\), the power dissipation per unit length
\[T(t) = -\frac{q\rho}{4\pi} \text{Ei}\left(\frac{-r^2}{4\alpha t}\right) \]

\[T(t) = \frac{q\rho}{4\pi} \left[\ln t + \ln \frac{4\alpha}{r^2D} \right] \]

\[\frac{q\rho}{4\pi} \ln \frac{4\alpha}{r^2D} \]
Temperature (°C) vs. Time (s)

- Temperature values: 28.0, 28.5, 29.0, 29.5, 30.0, 30.5, 31.0
- Time values: 50, 100, 150, 200, 250, 300

The graph shows a linear increase in temperature over time.
Thermal Conductivity of EPR’s

![Graph showing thermal conductivity of EPR’s over temperature range.](image)
Thermal Resistivity of EPR’s

[Graph showing thermal resistivity (°C·cm/W) vs. temperature (°C) for different EPR types, including XLPE, EPR3, EPR2, EPR4, and EPR1. The graph illustrates varying thermal resistivity across different temperatures for each type.]
Thermal Diffusivity & Heat Capacity

• Under steady state conditions, only the thermal conductivity is relevant
• Under transient conditions, the thermal diffusivity is relevant
 – Thermal diffusivity, α (m2/s), is the ratio of the thermal conductivity (W/m-K) to the volumetric heat capacity (J/m3-K)
 – The volumetric heat capacity of solids is about the same, 2x106 J/m3-K
Differential Scanning Calorimetry (DSC)

A thermal analysis tool for measuring thermal properties

- Heat Capacity
- Crystallinity
- Curing
- Oxidation or decomposition
Basic principles

- Applies a programmed temperature ramp to both blank and sample.
- Maintains both temperatures nearly identical at all time.
- Measures the amount of heat flow in and out of the sample relative to the blank.
- During phase transitions, more or less heat will need to go into the sample to keep both temperatures same.
Schematic of a DSC trace

- Heat Flow -> exothermic
- Glass Transition
- Crystallization
- Melting
- Cross-Linking (Cure)
- Oxidation or Decomposition
Heat Diffusion

• The distance heat diffuses in a time, t, is given by
 \[x = \sqrt{\alpha t} \]

• Since the thermal conductivity of EPR insulation is about 0.3 W/m-K and the heat capacity is about 2×10^6 J/m3-K, the thermal diffusivity is about 1.5×10^{-7} m2/s.

• Thus heat diffuses across the ~5 mm dielectric of a 15 kV cable in about
 \[t = \frac{x^2}{\alpha} = \frac{(5 \times 10^{-3})^2}{1.5 \times 10^{-7} \text{ m}^2/\text{s}} \approx 170 \text{ seconds} \]
Mechanical Properties

- Thermal Expansion of the dielectric is important for reliable high temperature operation, especially that involving repeated excursions to high temperatures.
- If the thermal expansion at high temperatures is too great and if the polymer has a tendency to soften and set at high temperature, the dielectric may distort and/or reduce interfacial pressures within accessories to a degree which results in failure.
Thermal Expansion from 80 to 140 °C

- EPR1 (320 ppm/K)
- EPR2 (340 ppm/K)
- EPR3 (300 ppm/K)
- EPR4 (390 ppm/K)
- XLPE
Dynamic Mechanical Analysis

• A DMA imposes a cyclic displacement on the sample and measures the force as a function of position.
 – From these data, the mechanical tan(δ), storage modulus (capacitance), loss modulus (resistance), etc. can be determined as a function of temperature.
 – The stress (Pa) required to cause the programmed displacement is a good measure of the “stiffness” of the material as a function of temperature.
Themogravimetric Analysis (TGA)

![Graph showing weight loss as a function of temperature for different samples labeled EPR1, EPR2, EPR3, EPR4, and XLPE.](image-url)
Physical Attributes of EPR

- Relatively high thermal conductivity as a result of mineral fillers
- Relatively small and uniform thermal expansion coefficient
- Relatively small variation in “stiffness” with temperature (a factor of 100 from –40 to +150 °C) compared to 1000 for unfilled dielectric.
- “Stiffness” or “Hardness” levels off at very high temperatures